A level-set method for interfacial flows with surfactant

نویسندگان

  • Jian-Jun Xu
  • Zhilin Li
  • John S. Lowengrub
  • Hongkai Zhao
چکیده

A level-set method for the simulation of fluid interfaces with insoluble surfactant is presented in two-dimensions. The method can be straightforwardly extended to three-dimensions and to soluble surfactants. The method couples a semi-implicit discretization for solving the surfactant transport equation recently developed by Xu and Zhao [J. Xu, H. Zhao. An Eulerian formulation for solving partial differential equations along a moving interface, J. Sci. Comput. 19 (2003) 573–594] with the immersed interface method originally developed by LeVeque and Li and [R. LeVeque, Z. Li. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994) 1019–1044] for solving the fluid flow equations and the Laplace–Young boundary conditions across the interfaces. Novel techniques are developed to accurately conserve component mass and surfactant mass during the evolution. Convergence of the method is demonstrated numerically. The method is applied to study the effects of surfactant on single drops, drop–drop interactions and interactions among multiple drops in Stokes flow under a steady applied shear. Due to Marangoni forces and to non-uniform Capillary forces, the presence of surfactant results in larger drop deformations and more complex drop–drop interactions compared to the analogous cases for clean drops. The effects of surfactant are found to be most significant in flows with multiple drops. To our knowledge, this is the first time that the level-set method has been used to simulate fluid interfaces with surfactant. 2005 Elsevier Inc. All rights reserved. AMS: 65M06; 65M12; 76T05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACoupled Immersed Interface and Level SetMethod for Three-Dimensional Interfacial Flows with Insoluble Surfactant

In this paper, a numerical method is presented for simulating the 3D interfacial flows with insoluble surfactant. The numerical scheme consists of a 3D immersed interface method (IIM) for solving Stokes equations with jumps across the interface and a 3D level-set method for solving the surfactant convection-diffusion equation along a moving and deforming interface. The 3D IIM Poisson solver mod...

متن کامل

An immersed boundary method for interfacial flows with insoluble surfactant

In this paper, an immersed boundary method is proposed for the simulation of two-dimensional fluid interfaces with insoluble surfactant. The governing equations are written in a usual immersed boundary formulation where a mixture of Eulerian flow and Lagrangian interfacial variables are used and the linkage between these two set of variables is provided by the Dirac delta function. The immersed...

متن کامل

A conservative SPH method for surfactant dynamics

In this paper, a Lagrangian particle method is proposed for the simulation of multiphase flows with surfactant. The model is based on the multi-phase smoothed particle hydrodynamics (SPH) framework of Hu and Adams [1]. Surfaceactive agents (surfactants) are incorporated into our method by a scalar quantity describing the local concentration of molecules in the bulk phase and on the interface. T...

متن کامل

A front-tracking method for computation of interfacial flows with soluble surfactants

A finite-difference/front-tracking method is developed for computations of interfacial flows with soluble surfactants. The method is designed to solve the evolution equations of the interfacial and bulk surfactant concentrations together with the incompressible Navier–Stokes equations using a non-linear equation of state that relates interfacial surface tension to surfactant concentration at th...

متن کامل

A Study on Structure and Property of Special Sulfonated Petroleum as a Complicated Anionic Surfactant

Alkaline/surfactant/polymer (ASP) flooding has been extensively applied to enhancing oil recovery. As an oil displacement agent, pe1troleum sulfonate (PS) is widely used in ASP pilot experiments. It is very important to find a petroleum sulfonate with a high interfacial activity and low adsorption loss. Anionic surfactant petroleum sulfonate is synthesized in a single-tube film sulfonation reac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 212  شماره 

صفحات  -

تاریخ انتشار 2006